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Abstract: CD spectra of a tandem 27-mer repeat polypeptide, Gln-Pro-His-Gln-Pro-Leu-Gln-Pro-His-Gln-
Pro-Leu-Gln-Pro-Met-(Gln-Pro-Leu)4, from bovine amelogenin synthesized by standard solid-phase synthesis
manifests an archtypical CD pattern of a β-spiral structure in phosphate buffer at pH 5.2 and trifluoroethanol
(TFE), CF3OH. β-spiral structure is unique to a class of diverse proteins including amelogenins conferring
unusual physicochemical properties. Copyright  2002 European Peptide Society and John Wiley & Sons,
Ltd.
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INTRODUCTION

Amelogenins comprise the major protein compo-
nent of the extracellular matrix of developing dental
enamel1–5 and have been implicated in enamel min-
eralization. The primary structures of mammalian
amelogenins from bovine, porcine, human, mouse
and rat have been determined, see Simmer and
Snead6 and Fincham et al.7,8 The primary structure
of amelogenins in the core domain of the protein
appears to be well conserved. The secondary struc-
ture of amelogenin has been a challenging problem
in structural biology (Renugopalakrishnan et al.,
submitted) due to a rigid structure arising from
contiguous β-turns imparting a β-spiral structure.

Amelogenin from developing bovine enamel, Mr ∼
20 kDa,9 a hydrophobic protein rich in Pro, Leu,

Abbreviations: TFE, trifluoroethanol.
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His, Met residues has been isolated, characterized,
purified, cloned and its primary structure has been
determined both from gas-phase sequencing and
cDNA. It has been shown to assume an unusual
3D structure characterized by β-sheets, repetitive
β-turns giving rise to a β-spiral, some unordered
segments, and a low α-helical content from CD
and FT-IR,2 Raman10 studies and MMD simulation.3

The bovine amelogenin contains a 27-residue tan-
dem repeating sequence,Gln-Pro-His-Gln-Pro-Leu-
Gln-Pro-His-Gln-Pro-Leu-Gln-Pro-Met-(Gln-Pro-Le-
u)4,(Gln-Pro-Leu)4, which has been suggested as a
likely candidate for the interaction of Ca++ ions.
Earlier molecular mechanics-dynamics simulation
of the 27-mer has shown that this tandem repeating
polypeptide assumes an unique β-spiral structure.
β-spiral structures have now been found to occur
in a number of diverse protein systems conferring
unique thermodynamic properties (Lagunez-Otero
et al., submitted from our laboratory). In this report,
we present details of its solid-phase synthesis and
demonstrate that the synthetic 27-residue peptides
assumes a β-spiral structure in 10 mM phosphate
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buffer, pH 5.2, and more markedly in 60 : 40 trifluo-
roethanol–water mixture using CD.

MATERIALS AND METHODS

Solid-Phase Polypeptide Synthesis

Peptide synthesis and HPLC purification were per-
formed using a Vega Model 50 synthesizer, a Mil-
ton Roy LDC apparatus and a Waters Pico-Tag
system, respectively. Benzhydrylamine resin (2 g,
0.64 nmol) was placed in the reaction vessel of the
peptide synthesizer and the Boc-amino acid deriva-
tives were coupled sequentially using preformed
symmetrical anhydrides or HOBT esters in accor-
dance with well-established procedures.11,12 At the
completion of synthesis, the peptide was released
from the resin by a low–high HF method and
purified by semipreparative HPLC and the amino
acid composition confirmed by amino acid analysis.
The sequence of the 27-residue was determined by
using an Applied Biosystem Model 470A gas-phase
sequencer.

CD Studies

CD spectra of Gln-Pro-His-Gln-Pro-Leu-Gln-Pro-
His-Gln-Pro-Leu-Gln-Pro-Met-(Gln-Pro-Leu)4 in 10
mM phosphate buffer, pH 5.2, at a concentration of

0.5 mg ml−1 was obtained as a function of tempera-
ture, starting from 11 °C to 50 °C, on a JASCO 720
spectropolarimeter. A cylindrical cell with a path-
length of 49 µm containing the solution was placed
in a chamber flushed with N2 gas and its temper-
ature was regulated by a thermostat. The spectra
represent the average of four repetitive scans, sig-
nal averaged and smoothed, The CD spectra were
recorded from λ near the UV region, 178 nm, to the
far UV region, 260 nm. Conformational analysis of
CD spectra was performed in accordance with the
algorithm described by Compton and Johnson.13

RESULTS AND DISCUSSION

CD spectra of Gln-Pro-His-Gln-Pro-Leu-Gln-Pro-
His-Gln-Pro-Leu-Gln-Pro-Met-(Gln-Pro-Leu)4 in 10
mM phosphate buffer, pH 5.2 at a concentration of
7.33 mM at 25° and 46 °C, respectively, is shown in
Figure 1. CD spectra at 25 °C show a negative trough
at λ∼200 nm and a positive trough at λ ≈ 185 nm.

On increasing the temperature to 46 °C there
was a slight red shift of the negative trough and
the positive trough manifested a noticeable posi-
tive hump with little or no change in the wave-
length. CD spectra of Gln-Pro-His-Gln-Pro-Leu-Gln-
Pro-His-Gln-Pro-Leu-Gln-Pro-Met-(Gln-Pro-Leu)4 in
60 : 40 trifluoroethanol (TFE) at the same concentra-
tion (7.33 mM) as in 10 mM phosphate buffer at 4°,
25° and 46 °C, respectively, is shown in Figure 2.
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Figure 1 CD spectra of Gln-Pro-His-Gln-Pro-Leu-Gln-Pro-His-Gln-Pro-Leu-Gln-Pro-Met-(Gln-Pro-Leu)4 in 10 mM phos-
phate buffer, pH 5.2 at a concentration of 7.33 mM at 25° and 46 °C, respectively.
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Figure 2 CD spectra of Gln-Pro-His-Gln-Pro-Leu-Gln-Pro-His-Gln-Pro-Leu-Gln-Pro-Met-(Gln-Pro-Leu)4 in 60 : 40 trifluo-
roethanol (TFE) at the same concentration (7.33 mM) as in 10 mM phosphate buffer at 4°, 25° and 46 °C.

TFE is a solvent known to promote helicity14

and in this solvent the polypeptide exhibits sim-
ilar CD patterns as in 10 mM phosphate buffer
with a deeper negative trough at λ = 202 nm and
a larger ellipticity value, θ , the positive hump,
while occurring at approximately the same posi-
tion as in Figure 1, is much more marked. The
CD spectra at 4° and 25 °C respectively bear
similarities whereas the CD spectra at 46 °C is
red shifted with a negative trough and positive
hump. CD spectra of Gln-Pro-His-Gln-Pro-Leu-Gln-
Pro-His-Gln-Pro-Leu-Gln-Pro-Met-(Gln-Pro-Leu)4 in
10 mM phosphate buffer and TFE are temperature
sensitive and are archtypical of type I β-turns.15 The
CD spectra of the tandem repeat polypeptide does
not bear a resemblance to the CD spectra of bovine
amelogenin,2 the CD spectra of porcine amelogenin
and fragments,16 or the recombinant mouse amel-
ogenin (M179) (Renugopalakrishnan et al., submit-
ted; Oobatake et al., submitted) because the integral
protein also contains β-sheet regions, rigid poly Pro
segments, and sparse α-helical segments in addition
to isolated β-turns and β-spiral segments.

Quantitative analysis of CD spectra of peptides
and proteins rich in β-turns and β-spiral has been
a contentious issue.17 Nevertheless, the CD spectra
were analysed for secondary structural composition
using a variable selection (VS) algorithm.13 The VS
algorithm relies on the basis set of observed CD
spectra of 15 proteins with a wide range of secondary
structural motifs and an α-helical polypeptide, poly

(L-Glu), and is also based on the concept of removing
proteins from the basis set that do not correspond to
the CD spectrum of the protein being analysed in a
systematic, self-consistent manner. The CD spectra
of the 27-mer in 60 : 40 trifluoroethanol : water
contains in excess of 75% β-turns, whereas in
10 mM phosphate buffer it contains slightly reduced
amounts of β-turns. A discrimination of the type
of β-turn based on CD data is quite difficult. The
percentage of β-turns is temperature dependent
with the percentile increasing with temperature,
typical of hydrophobic polypeptides and proteins
exhibiting inverse temperature transition.18,19

β-spiral structure offers an ideal structure for
facilitating the passage of Ca++ ions in amelogenin,
a hydrophobic protein (80% non-polar residues),
very sparse in traditional Ca++ chelators, e.g.
negatively charged residues Asp, Glu, Gla and yet
participates in the early events of biomineralization
of mammalian tooth enamel. Amelogenin is closely
associated with lipids in its natural habitat and
lipid encapsulation studies of amelogenin in our
laboratory have revealed that the protein spans
a phosphatidylcholine bilayer20 and shows Ca++

channel activity.
Tandem repeats have been found to occur in

a number of protein sequences spread across
eukaryotic and prokaryotic systems (mammalian
tropoelastin,21,22 mammalian tooth enamel pro-
tein — amelogenin,23 RNA polymerase II,24–26 pro-
lamin storage proteins of wheat and related
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cereals,27 titin,28 mucins,29,30 and flagelliform silk
cDNA).31 They impart important structural fea-
tures and confer specialized functional roles for this
diverse group of proteins.
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